skip to main content


Search for: All records

Creators/Authors contains: "Seabloom, ed., Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Disturbance is a key factor shaping ecological communities, but little is understood about how the effects of disturbance processes accumulate over time. When disturbance regimes change, historical processes may influence future community structure, for example, by altering invasibility compared to communities with stable regimes. Here, we use an annual plant model to investigate how the history of disturbance alters invasion success. In particular, we show how two communities can have different outcomes from species introduction, solely due to past differences in disturbance regimes that generated different biotic legacies. We demonstrate that historical differences can enhance or suppress the persistence of introduced species, and that biotic legacies generated by stable disturbance history decay over time, though legacies can persist for unexpectedly long durations. This establishes a formal theoretical foundation for disturbance legacies having profound effects on communities, and highlights the value of further research on the biotic legacies of disturbance.

     
    more » « less
  2. Abstract

    Pathogen persistence in host communities is influenced by processes operating at the individual host to landscape‐level scale, but isolating the relative contributions of these processes is challenging. We developed theory to partition the influence of host species, habitat patches and landscape connectivity on pathogen persistence within metacommunities of hosts and pathogens. We used this framework to quantify the contributions of host species composition and habitat patch identity on the persistence of an amphibian pathogen across the landscape. By sampling over 11 000 hosts of six amphibian species, we found that a single host species could maintain the pathogen in 91% of observed metacommunities. Moreover, this dominant maintenance species contributed, on average, twice as much to landscape‐level pathogen persistence compared to the most influential source patch in a metacommunity. Our analysis demonstrates substantial inequality in how species and patches contribute to pathogen persistence, with important implications for targeted disease management.

     
    more » « less
  3. Abstract

    While biological invasions have the potential for large negative impacts on local communities and ecological interactions, increasing evidence suggests that species once considered major problems can decline over time. Declines often appear driven by natural enemies, diseases or evolutionary adaptations that selectively reduce populations of naturalised species and their impacts. Using permanent long‐term monitoring locations, we document declines ofAlliaria petiolata(garlic mustard) in eastern North America with distinct local and regional dynamics as a function of patch residence time. Projected site‐specific population growth rates initially indicated expanding populations, but projected population growth rates significantly decreased over time and at the majority of sites fell below 1, indicating declining populations. Negative soil feedback provides a potential mechanism for the reported disappearance of ecological dominance ofA. petiolatain eastern North America.

     
    more » « less